Tom 24, № 127

© Roos G., 2019 DOI 10.20310/2686-9667-2019-24-127-316-323 УДК 512.812; 512.816

Bergman–Hartogs domains and their automorphisms

Guy ROOS

University of Poitiers 15 Rue de l'Hôtel Dieu, Poitiers 86073, France e-mail: guy.roos@normalesup.org

Области Бергмана–Гартогса и их автоморфизмы ги РООС

Университет Пуатье 86073, Франция, г. Пуатье, улица отеля Дью, 15 e-mail: guy.roos@normalesup.org

Abstract. For Cartan–Hartogs domains and also for Bergman–Hartogs domains, the determination of their automorphism groups is given for the cases when the base is any bounded symmetric domain and a general bounded homogeneous domain respectively.

Keywords: bounded symmetric domains; bounded homogeneous domain; automorphisms **For citation:** Roos G. Bergman–Hartogs domains and their automorphisms. *Vestnik rossiyskih universitetov. Matematika – Russian Universities Reports. Mathematics*, 2019, vol. 24, no. 127, pp. 316–323. DOI 10.20310/2686-9667-2019-24-127-316-323.

Аннотация. Для областей Картана—Гартогса, а также для областей Бергмана—Гартогса находятся их группы автоморфизмов — соответственно для случаев, когда база есть произвольная ограниченная симметрическая область и общая ограниченная однородная область.

Ключевые слова: ограниченные симметрические области; ограниченные однородные области; автоморфизмы

Для цитирования: *Роос Г.* Области Бергмана–Гартогса и их автоморфизмы // Вестник российских университетов. Математика. 2019. Т. 24. № 127. С. 316–323. DOI 10.20310/2686-9667-2019-24-127-316-323. (In Engl., Abstr. in Russian)

Cartan–Hartogs domains (see definition below) are in general non homogeneous, but their automorphism group acts transitively on the real hypersurfaces of a one parameter family. The exact automorphism group has been determined by Ahn Heungju, Byun Jisoo, Park Jong-do [1] when the base Ω of the Cartan–Hartogs domain is a bounded symmetric domain of classical type. Their method, using the Wong–Rosay theorem, may be extended to the case where the base Ω is any bounded symmetric domain. The result holds also for "Bergman-Hartogs domains" which are defined in the same way as Cartan-Hartogs domains, with a base Ω which is a general bounded homogeneous domain.

1. Definitions and notations

1.1. Bergman kernel. Let Ω be a bounded domain in a complex space V of dimension d. Let V be oriented by a translation invariant volume form ω . Let

$$\mathcal{H}(\Omega) = \left\{ f \in \mathcal{O}(\Omega) \mid \|f\|_{\Omega}^{2} := \int_{\Omega} |f(z)|^{2} \ \omega(z) < +\infty \right\}$$

be the Bergman space of Ω . Then $\mathcal{H}(\Omega)$, with the scalar product

$$(u \mid v)_{\Omega} := \int_{\Omega} u(z) \, \overline{v(z)} \, \omega(z)$$

is a Hilbert space of holomorphic functions (that is, $\mathcal{H}(\Omega)$ is a Hilbert space and the inclusion $\mathcal{H}(\Omega) \hookrightarrow \mathcal{O}(\Omega)$ is continuous). For $z \in \Omega$, let $K_{\Omega,z} \in \mathcal{H}(\Omega)$ such that

$$f(z) = (f \mid K_{\Omega,z})_{\Omega}$$

for all $f \in \mathcal{H}(\Omega)$. The Bergman kernel of Ω is the reproducing kernel

$$K(z,t) = K_{\Omega}(z,t) = \overline{K_{\Omega,z}(t)}$$

of $\mathcal{H}(\Omega)$. Denote

$$\mathcal{K}(z) = \mathcal{K}_{\Omega}(z) := K_{\Omega}(z, z) = \|K_{\Omega, z}\|_{\Omega}^{2}$$

(which is also called Bergman kernel of Ω).

If $g: \Omega \to \Omega$ is a holomorphic automorphism of Ω , then

$$\mathcal{K}_{\Omega}(gz) = rac{\mathcal{K}_{\Omega}(z)}{\left|Jg(z)\right|^2},$$

where Jg(z) is the complex Jacobian of g at z.

1.2. Cartan domains. Let Ω be an irreducible complex symmetric domain of non compact type ("Cartan domain"), realized as the spectral unit ball of a simple Hermitian positive Jordan triple V.

We denote by (a, b, r) the numerical invariants of V; by γ the genus of V: $\gamma = 2 + a(r-1) + b$ and by $\mathcal{N}(x, y)$ the generic norm of V (which is an irreducible polynomial of bidegree (r, r)).

The Bergman kernel of Ω is then

$$\mathcal{K}_{\Omega}(z) = \mathcal{K}_{\Omega}(0)\mathcal{N}(z,z)^{-\gamma}.$$

318 G. Roos

1.3. Cartan-Hartogs domains.

Definition 1. For a real number $\mu>0$ and an integer N>0, let $\widetilde{\Omega}$ be the Hartogs type domain defined by

$$\widetilde{\Omega} = \widetilde{\Omega}(\mu, N) := \left\{ (z, Z) \in \Omega \times \mathbb{C}^N \mid \|Z\|^2 < \mathcal{N}(z, z)^{\mu} \right\}.$$

The domain $\widetilde{\Omega}(\mu, N)$ is called Cartan–Hartogs domain.

Cartan-Hartogs domains have been introduced by Weiping Yin and G. Roos in 1998. They generalize various domains like *complex ellipsoids* (Thullen domains).

1.4. Bergman–Hartogs domains. Let Ω be a bounded complex domain. Let c > 0 be a positive real number and N > 0 an integer.

Definition 2. The Bergman-Hartogs domain $\widehat{\Omega}(c, N)$ is

$$\widehat{\Omega}(c, N) := \left\{ (z, Z) \in \Omega \times \mathbb{C}^N \mid ||Z||^2 < \mathcal{K}_{\Omega}(z)^{-c} \right\},\,$$

where \mathbb{C}^N is endowed with the standard Hermitian structure.

The Cartan–Hartogs domain $\widetilde{\Omega}(\mu, N)$ is linearly equivalent to the Bergman–Hartogs domain:

$$\widetilde{\Omega}(\mu, N) \simeq \widehat{\Omega}(\mu/\gamma, N).$$

1.5. Example: Thullen domains. Let $V = \mathbb{C}^n$ be the standard Hermitian vector space, with scalar product $(z \mid t) = \sum_{j=1}^n z_j \overline{t_j}$ and Hermitian norm $||z||^2 = (z \mid z)$.

The associated symmetric domain is the Hermitian unit ball $\Omega = B_n$ of V. The genus of Ω is g = n + 1. The generic norm is

$$\mathcal{N}(z,t) = 1 - (z \mid t).$$

The Cartan–Hartogs domain $\widetilde{\Omega}(\mu, N)$ is then

$$\widetilde{\Omega}(\mu, N) = \left\{ (z, Z) \in V \times \mathbb{C}^N \mid \|z\|^2 + \|Z\|^{2/\mu} < 1 \right\}.$$

These domains are called *Thullen domains* and also known as *complex ellipsoids*, or *complex ovals*, or *egg domains*.

Let $\Omega = B_n$ be the Hermitian unit ball of $V = \mathbb{C}^n$. For $\mu = 1$, $\widetilde{\Omega}(\mu, N)$ is the Hermitian unit ball B_{n+N} of \mathbb{C}^{n+N} and is homogeneous.

Proposition 1. The Thullen domain $\widetilde{\Omega}(\mu, N)$ is biholomorphic to B_{n+N} if and only if $\mu = 1$.

Proof. Let $f: B_{n+N} \to \widetilde{\Omega}(\mu, N)$ be a biholomorphism. By composing f with a suitable automorphism of B_{n+N} , we may assume that f(0) = 0. As B_{n+N} is a bounded circled domain and $\widetilde{\Omega}(\mu, N)$ is bounded, a lemma of H. Cartan implies that f is linear. It is then easy to check that the image of the boundary of B_{n+N} by f is the boundary of $\widetilde{\Omega}(\mu, N)$ if and only if $\mu = 1$.

2. Boundary and automorphisms

2.1. Strictly pseudoconvex boundary points. Let Ω be a bounded complex domain. Let c > 0 be a positive real number and N > 0 an integer. Let $X : \Omega \times \mathbb{C}^N \to (0, +\infty)$ be defined by

$$X(z,Z) := \mathcal{K}_{\Omega}(z)^c \|Z\|^2.$$

Proposition 2. The points of

$$\partial_0 \widehat{\Omega}(c, N) := \left\{ (z, Z) \in \Omega \times \mathbb{C}^N \mid ||Z||^2 = \mathcal{K}_{\Omega}(z)^{-c} \right\}$$

are strictly pseudoconvex boundary points of $\widehat{\Omega}(c, N)$.

This property has been noticed by Ahn Heungju, Byun Jisoo, Park Jong-do [1] when Ω is a bounded symmetric domain of classical type, and proved by them case-by-case for symmetric domains of classical type.

Proof. Consider the function

$$\ln X(z, Z) = c \ln \mathcal{K}_{\Omega}(z) + \ln \|Z\|^2.$$

Its Levi form at (z, Z) is

$$\mathcal{L}_{(z,Z)}((w_1, W_1), (w_2, W_2)) = \partial_{(w_1, W_1)} \overline{\partial}_{(w_2, W_2)} \ln X(z, Z)$$

$$= c \, \partial_{w_1} \overline{\partial}_{w_2} \ln \mathcal{K}_{\Omega}(z) + \partial_{W_1} \overline{\partial}_{W_2} \ln \|Z\|^2.$$

Then $\partial_{w_1} \overline{\partial}_{w_2} \ln \mathcal{K}_{\Omega}(z)$ is the Bergman metric $h_z(w_1, w_2)$ of Ω at z and

$$\partial_W \overline{\partial}_W \ln ||Z||^2 = \frac{||Z||^2 ||W||^2 - |(W | Z)|^2}{||Z||^4}.$$

The complex tangent hyperplane $H_{(z,Z)}$ to $\partial_0 \widehat{\Omega}(c,N) = \{\ln X(z,Z) = 0\}$ at (z,Z) is

$$H_{(z,Z)} = \left\{ (w,W) \mid c \langle \partial \ln \mathcal{K}_{\Omega}(z), w \rangle + \frac{(W \mid Z)}{\|Z\|^2} = 0 \right\}.$$

For $(w, W) \in H_{(z,Z)}$,

$$\mathcal{L}_{(z,Z)}((w,W),(w,W)) = h_z(w,w) + \frac{\|Z\|^2 \|W\|^2 - |(W \mid Z)|^2}{\|Z\|^4} \geqslant 0.$$

If
$$\mathcal{L}_{(z,Z)}((w,W),(w,W)) = 0$$
, then $w = 0$, which implies $(W \mid Z) = 0$, hence $\mathcal{L}_{(z,Z)}((w,W),(w,W)) = \|Z\|^{-2} \|W\|^2$ and $W = 0$.

2.2. Automorphisms of Cartan–Hartogs domains. Let Ω be a bounded irreducible circled symmetric domain in V, with generic norm N, genus γ and Bergman kernel K(z,t).

320 G. Roos

Let $\widetilde{\Omega}$ be the Cartan–Hartogs domain ($\mu > 0$, $N \ge 1$)

$$\widetilde{\Omega} = \widetilde{\Omega}(\mu, N) = \left\{ (z, Z) \in \Omega \times \mathbb{C}^m \mid \|Z\|^2 < N(z, z)^{\mu} \right\}.$$

Define $X: \widetilde{\Omega} \to [0,1)$

$$X(z,Z) = \frac{\|Z\|^2}{N(z,z)^{\mu}}.$$

2.2.1. Boundary of Cartan–Hartogs domains. The boundary of the Cartan domain Ω is a disjoint union of locally closed manifolds

$$\partial\Omega = \coprod_{j=1}^r \partial_j \,\Omega.$$

The boundary of the Cartan–Hartogs domain $\widetilde{\Omega} = \widetilde{\Omega}(\mu, N)$ is

$$\partial \widetilde{\Omega} = \partial_0 \, \widetilde{\Omega} \sqcup (\partial \Omega \times \{0\}) = \coprod_{j=0}^r \, \partial_j \, \widetilde{\Omega},$$

with

$$\begin{split} \partial_0 \widetilde{\Omega} &= \left\{ (z, Z) \in \Omega \times \mathbb{C}^N \mid \|Z\|^2 = N(z, z)^{\mu} \right\}, \\ \partial_j \widetilde{\Omega} &= \partial_j \Omega \times \{0\} \qquad (1 \leqslant j \leqslant r). \end{split}$$

The points of $\partial_0 \widetilde{\Omega}$ are strictly pseudoconvex boundary points.

2.2.2. Restricted automorphisms of Cartan–Hartogs domains. Denote by Aut' $\widetilde{\Omega}$ the subgroup of automorphisms of $\widetilde{\Omega}$ which leave X invariant.

Proposition 3. The group $\operatorname{Aut}'\widetilde{\Omega}$ consists of all $\Psi:(z,Z)\mapsto (\Phi(z),\psi(z)U(Z))$, where $\Phi\in\operatorname{Aut}\Omega$, $U:C^N\to C^N$ is special unitary and ψ satisfies

$$|\psi(z)|^2 = \left(\frac{N(\Phi z, \Phi z)}{N(z, z)}\right)^{\mu}.$$

For $\Phi \in \operatorname{Aut} \Omega$, let $z_0 = \Phi^{-1}(0)$; then the functions ψ satisfying this condition are the functions

$$\psi(z) = e^{i\theta} \frac{N(z_0, z_0)^{\mu/2}}{N(z, z_0)^{\mu}}.$$

The orbits of Aut' $\widetilde{\Omega}$ are the level sets $\Sigma_{\lambda} = \{X = \lambda \mid \lambda \in [0,1)\}$.

See [3].

2.2.3. The automorphism group of a Cartan–Hartogs domain. The following result is proved by Ahn Heungju, Byun Jisoo, Park Jong-do [1] when Ω is a symmetric domain of classical type.

Theorem 1. (1) The Cartan–Hartogs domain $\widetilde{\Omega}(\mu, N)$ is homogeneous if and only if Ω is of type $I_{1,n}$ (that is, an Hermitian ball of dimension n) and $\mu = 1$. Then $\widetilde{\Omega}(1, N)$ is symmetric of type $I_{1,n+m}$.

(2) If $\widetilde{\Omega} = \widetilde{\Omega}_m(\mu)$ is not homogeneous, then Aut $\widetilde{\Omega} = \operatorname{Aut}' \widetilde{\Omega}$.

The proof relies on the Wong–Rosay theorem:

Theorem. [2] Let D be a bounded complex domain and ξ_0 a strictly pseudoconvex C^2 boundary point of D. If there exist an interior point $x \in D$ and a sequence (T_k) of holomorphic automorphisms of D, such that $T_k(x) \to \xi_0$, then D is biholomorphic to an Hermitian ball.

The proof of Ahn–Byun–Park relies on the strict pseudoconvexity of $\partial_0 \widetilde{\Omega}(\mu, N)$, so this proof is valid for any irreducible symmetric domain Ω .

Proof. Let

$$\Phi \in \operatorname{Aut} \widetilde{\Omega}(\mu, N),$$

 $z_i \in \Omega \to \zeta \in \partial \Omega.$

There exist

$$g_j \in \operatorname{Aut} \Omega$$
 such that $g_j(0) = z_j$,
 $\widetilde{g}_j \in \operatorname{Aut} \widetilde{\Omega}(\mu, N)$ such that $\widetilde{g}_j(0, 0) = (z_j, 0)$.

Then

$$(\Phi(z_j,0)) = (T_j(0,0)), \qquad T_j = \Phi \circ \widetilde{g}_j \in \operatorname{Aut} \widetilde{\Omega}(\mu,N).$$

The main steps of the proof are then

- If (z_j) has a subsequence such that $(\Phi(z_j, 0))$ converges to a point $\xi_0 \in \partial_0 \widetilde{\Omega}(\mu, N)$, then $\widetilde{\Omega}(\mu, N)$ is biholomorphic to an Hermitian ball by the Wong–Rosay theorem.
- $\widetilde{\Omega}(\mu, N)$ is biholomorphic to an Hermitian ball if and only if Ω is an Hermitian ball and $\mu = 1$.
- If $\widetilde{\Omega}(\mu, N)$ is not an Hermitian ball, then $\Phi(\Omega \times \{0\}) = \Omega \times \{0\}$ for all $\Phi \in \operatorname{Aut} \widetilde{\Omega}(\mu, N)$.
- Let $\Phi \in \operatorname{Aut} \widetilde{\Omega}(\mu, N)$. If $\Phi(\Omega \times \{0\}) = \Omega \times \{0\}$, then $\Phi \in \operatorname{Aut}' \widetilde{\Omega}(\mu, N)$.
- **2.3. Bergman–Hartogs domains.** From now on, we assume that Ω is a bounded *homogeneous* domain. Let G denote its automorphism group.
- 2.3.1. Restricted automorphisms. For $g \in G$, let $\widetilde{g} \in \operatorname{Aut} \widehat{\Omega}(c, N)$ be defined by

$$\widetilde{g}(z,Z) := (gz, Jg(z)^c Z).$$

322 G. Roos

Note that the function $z \mapsto Jg(z)^c$ is in general not unique and is defined up to multiplication by a power of $\exp(2i\pi c)$. The group

$$\widetilde{G} = \{ \widetilde{g} \mid \widetilde{g}(z, Z) = (gz, Jg(z)^c Z), g \in G \}$$

is a covering of G and a subgroup of Aut $\widehat{\Omega}(c, N)$.

Definition 3. The restricted automorphism group of $\widehat{\Omega}(c, N)$ is

$$\operatorname{Aut}'\,\widehat{\Omega}(c,N) = \left\{ \Phi \in \operatorname{Aut}\,\widehat{\Omega}(c,N) \,\mid\, X \circ \Phi = X \right\},$$

where $X(z, Z) := \mathcal{K}_{\Omega}(z)^c ||Z||^2$.

Proposition 4. Let $\Phi \in \operatorname{Aut} \widehat{\Omega}(c, N)$. The following properties are equivalent:

- 1. $\Phi \in \operatorname{Aut}' \widehat{\Omega}(c, N)$;
- 2. $\Phi(\Omega \times \{0\}) = \Omega \times \{0\};$
- 3. there exist $g \in G$ and $U \in \mathsf{U}(N)$ such that $\Phi(z,Z) = (gz,Jg(z)^cUZ)$.

2.3.2. The automorphism group of a Bergman–Hartogs domain.

Theorem 2. (1) The Bergman–Hartogs domain $\widehat{\Omega}(c,N)$ is homogeneous if and only if Ω is an Hermitian ball of dimension n and $c=\frac{1}{n+1}$. Then $\widehat{\Omega}\left(\frac{1}{n+1},N\right)$ is an Hermitian ball of dimension n+N.

(2) In all other cases, Aut $\widehat{\Omega}(c, N) = \operatorname{Aut}' \widehat{\Omega}(c, N)$.

The main steps of the proof are the same than for Cartan–Hartogs domains:

- If (z_j) has a subsequence such that $(\Phi(z_j, 0))$ converges to a point $\xi_0 \in \partial_0 \widehat{\Omega}(c, N)$, then $\widehat{\Omega}(c, N)$ is biholomorphic to an Hermitian ball by the Wong–Rosay theorem.
- $\widehat{\Omega}(c,N)$ is biholomorphic to an Hermitian ball if and only if Ω is an Hermitian ball and $c=\frac{1}{n+1}$.
- If $\widehat{\Omega}(c,N)$ is not an Hermitian ball, then $\Phi(\Omega \times \{0\}) = \Omega \times \{0\}$ for all $\Phi \in \operatorname{Aut} \widehat{\Omega}(c,N)$.
- Let $\Phi \in \operatorname{Aut} \widehat{\Omega}(c, N)$. If $\Phi(\Omega \times \{0\}) = \Omega \times \{0\}$, then $\Phi \in \operatorname{Aut}' \widehat{\Omega}(c, N)$.

References

- [1] Heungju Ahn, Jisoo Byun, Jong-Do Park, "Automorphisms of the Hartogs type domains over classical symmetric domains", *International Journal of Mathematics*, **23**:9 (2012), 1–11.
- [2] Jean-Pierre Rosay, "Sur une caractérisation de la boule parmi les domaines de \mathbb{C}^n par son groupe d'automorphismes", Annales de l'institut Fourier, **29**:4 (1979), 91–97.
- [3] Yin Weiping, Lu Keping, Roos Guy, "New classes of domains with explicit Bergman kernel", Science in China. Series A: Mathematics, 47:3 (2004), 352–371.

Список литературы

- [1] Heungju Ahn, Jisoo Byun, Jong-Do Park, "Automorphisms of the Hartogs type domains over classical symmetric domains", *International Journal of Mathematics*, **23**:9 (2012), 1–11.
- [2] Jean-Pierre Rosay, "Sur une caractérisation de la boule parmi les domaines de \mathbb{C}^n par son groupe d'automorphismes", Annales de l'institut Fourier, **29**:4 (1979), 91–97.
- [3] Yin Weiping, Lu Keping, Roos Guy, "New classes of domains with explicit Bergman kernel", Science in China. Series A: Mathematics, 47:3 (2004), 352–371.

Information about the author

Guy Roos, Doctor of Physics and Mathematics, Professor. University of Poitiers, Poitiers, France. E-mail: guy.roos@normalesup.org

Received 15 May 2019 Reviewed 25 June 2019 Accepted for press 23 August 2019

Информация об авторе

Роос Ги, доктор физико-математических наук, профессор. Университет Пуатье, г. Пуатье, Франция. E-mail: guy.roos@normalesup.org

Поступила в редакцию 15 мая 2019 г. Поступила после рецензирования 25 июня 2019 г. Принята к публикации 23 августа 2019 г.